New vanadium solid state energy storage technology breakthrough

By Zhilong Shen,a Yunpo Sun,a Jian Xie,*ab Shuangyu Liu,c Dagao Zhuang,d Genlin Zhang,d Wenquan Zheng,d Gaoshao Caob and Xinbing Zhaoab for Inorganice Chemistry Frontiers

New vanadium solid state energy storage technology breakthrough offers over 5.5X energy density compared to lithium batteries with over 5000 cycles (vs 300-500 for lithium)Synthesis of Au-V2O5 composite nanowires through the shape transformation of a vanadium(III) metal complex for high-performance solid-state supercapacitors

Abstract

Exploring nonprecious, efficient and stable electrocatalysts for overall water splitting is of great importance, but it is also challenging. In this study, N-doped carbon@ CoN/Cu3N/copper foam (namely, NC@CoN/Cu3N/CF) nanoarrays with a hollow tubular structure have been successfully synthesized through a facile method. The as-produced NC@CoN/Cu3N/CF with a 3D hierarchical structure was highly beneficial for electrocatalysis; it displayed improved electrical conductivity, abundant exposed active catalytic sites, numerous “highways” for charge transport and synergistic effect of each component. The enhanced characteristics resulted in largely improved kinetics and activity for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The NC@CoN/Cu3N/CF electrode exhibited low overpotentials of 303 mV to reach a current density of 50 mA cm−2 for OER and 134 mV to reach a current density of 10 mA cm−2 for HER in an alkaline solution. Furthermore, as an electrocatalyst for overall water splitting, NC@CoN/Cu3N/CF served as both the anode and cathode, delivering a current density of 10 mA cm−2 at a quite low cell voltage of 1.62 V, and it displayed excellent long-term stability (15 h at 20 mA cm−2). This study provides a rational strategy and approach to fabricate transition metal nitrides with 3D hierarchical structures as efficient electrocatalysts in renewable energy applications.

 

Continue reading the full story here >>