Disclaimer

This presentation does not constitute or form part of, and should not be construed as, an offer to sell or issue or the solicitation of an offer to buy or acquire securities of the Company or any of its subsidiaries nor should it or any part of it, not the fact of its distribution, form the basis of, or relied on in connection with, any contract or commitment whatsoever. This presentation has been prepared by, and is the sole responsibility of, the Company. This document, any presentation made in conjunction herewith and any accompanying materials are for information only and are not a prospectus, offering circular or admission document. This presentation does not form a part of, and should not be construed as, an offer, invitation or solicitation to subscribe for or purchase, or dispose of any of the securities of the companies mentioned in this presentation. These materials do not constitute an offer of securities for the sale in Canada, the United States or elsewhere or an invitation or an offer to the public or form of offer or commitment whatsoever. The information contained in this presentation has not been independently verified. No representation or warranty, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy or completeness of the information or the opinions contained herein. The Company and its advisors are under no obligation to update or keep current the information contained in this presentation. To the extent allowed by law, none of the Company or its affiliates, advisors or representatives accept any liability whatsoever (in negligence or otherwise) for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection with the presentation. Certain statements in this presentation constitute forward-looking statements, including statements regarding the Company’s financial position, business strategy, plans and objectives of management for future operations. These statements, which contain the works “believe”, “expect”, “anticipate”, “intends”, “estimate”, “forecast”, “project”, “will”, “may”, “should”, “could”, and similar expressions, reflect the beliefs and expectations of the management board of directors of the Company and are subject to risks and uncertainties that may cause actual results to differ materially. These risks and uncertainties include, among other factors, the achievement of the anticipated levels of profitability, growth, cost and synergy of the Company’s recent acquisitions, the timely development and acceptance of new products, the impact of competitive pricing, the ability to obtain necessary regulatory approvals, and the impact of general business and global economic conditions. These and other factors could adversely affect the outcome and financial effects of the plans and events described herein. Neither the Company, nor any of its respective agents, employees or advisors intend or have any duty or obligation to supplement, amend, update or revise any of the forward-looking statements contained in this presentation. The information and opinions contained in this document are provided as at the date of this presentation and are subject to change without notice. This document has not been approved by any competent regulatory or supervisory authority.
A Green Future with VanadiumCorp

“2020 marks the 13th year of vanadium resource development for VanadiumCorp and a maiden resource statement is anticipated in Q4 that may rival grade, size and metallurgy only found in the Bushveld Complex in South Africa. Our objective is to harness the potential of our exceptional vanadium resources into the fast-emerging vanadium redox flow battery “VRFB” market. VRFB technology is 100% green when the contained vanadium is produced sustainably. The green recovery technology and strategic vanadium resources of VanadiumCorp may enable a new era of clean energy storage.”

Adriaan Bakker
President / Chief Executive Officer
Our Company - VanadiumCorp is a mining and technology company focused on developing its wholly-owned strategic vanadium-titanium-iron resource base and green process technology in the geopolitically stable and safe mining-friendly province of Quebec, Canada. VanadiumCorp is a Tier 1 issuer on the TSX Venture Exchange trading under the stock symbol "VRB"

Our Vision - A world without pollution from metal production, energy storage, or renewable technologies.

Our Mission - To develop our exceptional mineral resources and process technology to produce vanadium with all by-products (titanium, iron, and silica).

Our Values - We are committed to creating long-term relationships with the communities in which we operate as well as with our stakeholders, creating shared value for them and us, and operating with a focus on human rights. Our approach to sustainability reflects our commitment to operate ethically, transparently, and is implemented throughout the company, and is reflected in our governance and policies.
Company Overview

Capitalization Structure – TSX- Venture “VRB”

Share Issued/Outstanding: 288,551,120
Market Capitalization: $18,756,000.00 CDN
Warrants: 21,108,699
Options: 21,108,699
Cash Position: $995,146.00 CDN
As of financials filed June 29, 2020

Stock Exchange Listings

TSX Venture – Ticker Symbol: “VRB”
OTC Markets - Ticker Symbol: ‘APAFF”
Frankfurt Exchange - Ticker Symbol “NWN”

Major Shareholders
Roger Shook – 12.35%
Management -- 3.5%

Vanadium Resources - Battery Materials
Primary vanadium hosted in massive magnetite in Quebec, Canada for the long term.
Vision to build an all-electric magnetite mine with local transformation of V, Ti and Fe.

Processing Technology - Green Recovery
Eco-friendly alternative to recover vanadium with all by-products.
Vertical integration goal to reducing the cost and carbon footprint of vanadium batteries.

Energy Storage - Infinite Re-use in Energy Storage
Global alliances to facilitate increased use of vanadium in VRFBs.
Vision to become a lead supplier of advanced materials to fuel the emerging VRFB market.

Investment Proposition – Circumventing the Metallurgical Market
Experienced Team

Board of Directors
Adriaan Bakker – Chief Executive Officer / President
Stephen Pearce – Chief Financial Officer
Gilles Y. Champagne – Chief Technical Officer
John Hewlett – Director
Sokhie Puar – Director

Advisory Board & Technical Team
Dr. Maria Skyllas-Kazacos - Professor Emeritus, Inventor of the VRFB
Terry Perles - Vanadium market and commodity advisor
Denis Bouchard - Manager, Strategic Project Development
James (Jim) A. McLeod - Explorationist & Cree First Nations Advisor
Paul Sorbara - M.Sc., P.Geo. & Advisor
Peter Maclean - Financial Advisor & Consultant

Strategic Partners, Consultants and Clients

Mining
CSA Global – Mineral resource estimate [Website Link]
Table jamésienne de Concertation Minière – Mining project and regional advisory [Website Link]
InnovExplo – Drill program and testing management [Website Link]
Miikan Drilling Ltd – Contracted drilling company [Website Link]
SGS – Drill core testing and metallurgy [Website Link]
EnviroCree Ltd. – First Nations community advisory and environmental consulting [Website Link]

Process Technology
Electrochem Technologies & Materials Inc. – Technology Joint Owner and Developer, R&D and trial production and testing of global feedstocks [Website Link]

Energy Storage
Delectrik Systems Pvt Ltd – Partnership to improve/optimize VRFB stack power and alliance to market VRFB products [Website Link]
Cenelest (Fraunhofer ICT & UNSW) – Testing and integration of higher energy density electrolyte [Website Link]
The Challenge

Pollutive and inefficient recovery restricting vanadium supply.

- Very few vanadium resources meet the criteria required to produce vanadium for high purity applications.
- Vanadium has historically been produced, consumed and controlled by global steel interests.

- Producing vanadium has not changed in 60 years. Conventional smelting and roasting is inefficient, pollutive and must evolve to meet the emerging Vanadium Redox Flow Battery (VRFB) markets.

- World bank forecasts 500X growth in battery metal demand for energy storage systems by 2050 which will put existing supply chain under severe stress.

- Increased awareness of pollutive vanadium and steel production methods has slowed development of new supply.
Our 100% owned North American resource base is located in the geopolitically stable and safe jurisdiction of Québec, Canada.

Commercializing and licensing VEPT will unlock global supply.

VanadiumCorp-Electrochem Process Technology (VEPT) represents an eco-friendly and cost-efficient process alternative that recovers vanadium with all by-products.

Vanadium electrolyte is reusable and the main component of the VRFB technology.

VanadiumCorp's subsidiary in Germany, VanadiumCorp GmbH is facilitating increased use of vanadium in VRFBs.

Opportunity to reduce the world's carbon footprint by producing vanadium, sustainably, for perpetual use in 100% green VRFBs.
Clean Energy Resource Base

VanadiumCorp owns 100% of two of the foremost undeveloped primary vanadium-rich magnetite resources.
Magnetite
The Ultimate Source of Vanadium

Vanadium is plentiful in the earth’s crust, however, most of this green critical metal is trapped in thousands of massive magnetite resources and there are very few operating primary vanadium producers.

Magnetite is the leading (primary) source of vanadium. Current primary methods recover just 1% as vanadium from magnetite and dispose of all iron and titanium value in the calcine waste.
Vanadium Resource Base
Lac Doré & Iron-T

What sets us apart:

- **Grade** - Vanadium resources in Quebec, Canada. Massive, semi-massive and disseminated magnetite with metal grades rivalling primary vanadium mines in Bushveld, South Africa.
- **Size** - Vertically oriented, and open at 200m+ depth and 2km strike.
- **Quality** - Exceptional metallurgy and low impurities facilitate high recovery.
- **Access** - At surface mineralization and low strip ratio.
- **Infrastructure** - Situated near roads, the CN railway, 161KV power, water, local airport and an experienced workforce.
- **Vanadium battery integration verified** - Pilot production of high purity vanadium electrolyte at SGS Lakefield was successfully commissioned by Sumitomo in vanadium redox flow batteries.
- **100% owned** - Uncommitted Supply.
- **Location** - Both projects are supported by local communities and Cree First Nations, in the Eeyou Istchee James Bay Territory of mining friendly Québec, Canada.
Vanadium, Iron & Titanium in Québec, Canada

Our Lac Doré Project in Chibougamau, Québec is one of the world’s premier, undeveloped vanadium resources.

World class vanadium resource - Security of supply: 2,970,000,000 lbs Vanadium Pentoxide contained in over 300 million tonnes in-situ mineralization with favorable metallurgy.

Development - Objective to advance key vanadium mining assets through integration of green process technology targeting the lowest cost vanadium for energy storage.
Clean Energy Process
Efficient and green recovery of vanadium, titanium, and iron.
Conventional steel and vanadium production methods have not changed in over half a century. The vanadium industry is constrained by expensive and inefficient recovery methods, that damage the environment, emitting close to two tonnes of carbon for every tonne of product.

The Current Situation:
• The extraction of vanadium usually neglects the recovery of iron, titanium and silica
• Huge calcine stockpiles are generated without further processing
• Requires overseas sourcing of chemicals and raw materials (coal, electrodes, ammonia)
• Significant water and energy consumptions
• Large carbon footprint
• Requirement to build an integrated smelter
• Unreliable profitability has led to the closure of several vanadium producers worldwide
Breakthrough Innovation “VEPT”

The VanadiumCorp-Electrochem Process Technology (“VEPT”) is the most efficient, low carbon, high yield, process for unlocking a new strategic supply of critical metals needed globally.

Conventional pyrometallurgical processes for producing vanadium utilize either direct soda-ash roasting of the magnetite, followed by water leaching, or the arc smelting and slagging of the magnetite followed by soda-ash roasting of the vanadium-rich slag.

Smelting or roasting is capital intensive with high operating costs, technical risks and significant emissions of greenhouse gases, that pose serious environmental issues. The long-term economics of smelting and roasting are unattractive, and the environmental impact too costly.

The VEPT addresses these key issues and allows the full recovery of vanadium to produce vanadium electrolyte (VE) or vanadium chemicals, as well as the concurrent production of titanium byproduct, high quality and competitive iron co-product and silica.
Cost-Effective And Green Recovery of Vanadium Is The Key To The Advancement Of Vanadium Batteries

Our revolutionary VanadiumCorp-Electrochem Process Technology (VEPT) is a cost-effective and Green Method (VEPT) that recovers all metal values and facilitates mass commercialization of VRFBs.

The Pollutive (Primary) Method recovers only vanadium, produces significant waste and greenhouse gases and does not facilitate VRFB commercialization.

Green Method ("VEPT")

Pollutive Method ("PRIMARY")
Partnership with Electrochem
Joint Strategy and Development

On January 2018, VanadiumCorp signed a partnership agreement with Electrochem Technologies & Materials Inc. The partnership expands on successful collaboration that began in 2016, with the objective of commercial demonstration.

Key Successes to Date:
• Construction of custom-built reactor pilot with 300 kg/month nameplate capacity
• National patent protection in key global jurisdictions and international PCT published
• Trial production of VanadiumCorp magnetite and vanadium feedstocks including waste residues from global companies

Core Objectives:
• License technology globally and demonstrate commercially
• Upgrade process option for mining projects with VEPT
• Produce eco-friendly and cost-effective vanadium electrolyte for VRFBs
Clean Energy Storage

Vanadium is the main component of 100% green vanadium redox flow battery technology “VRFB”.
XRG is the brand of VanadiumCorp GmbH (Germany), a wholly-owned subsidiary of VanadiumCorp Resource Inc. Vanadium is the main component (both cathode and anode) of the VRFB and VanadiumCorp has the security of supply in strategic mineral resources and proprietary green and efficient recovery technology. Through strategic alliances, VanadiumCorp is participating in advancements pertaining to VRFB architecture and electrolyte chemistries. This strategy is aimed at facilitating commercialization of proven VRFB technology, which is the fastest growing application for vanadium today.

XRG Vanadium Redox Flow Battery

One of two VRFB units delivered to Ecosource NV, Cordeel Group, Belgium
Strategic Alliances

Collaboration With the Best Teams

Delectrik Systems Pvt Ltd – Partnership to improve/optimise VRFB stack power and alliance to market VRFB products

Ceneleste (Fraunhofer ICT & UNSW) – Testing and integration of higher energy density electrolyte

National Research Council Canadian (NRC) – Assessment of Vanadium Electrolyte for Vanadium Redox Flow Batteries
About Vanadium

The element, the history and the world’s increasing demand.
What is Vanadium?

Vanadium is a grey, soft and ductile high-value metal with several unique characteristics that position it strongly in the steel, alloys and chemicals sectors. The metal also acts as a battery material that is 100% reusable.

More than 80% of vanadium is recovered from magnetite and titano-magnetite ores, either as the primary product or more commonly as a co-product with iron processed for steel production. It can also be recovered as a secondary product from fly ash, petroleum residues, alumina slag, and from the recycling of spent catalysts used in some crude oil refining.

Today, Vanadium is the most utilized “green” alloy, with the highest strength to weight ratio.
History of Vanadium

Vanadium was officially discovered by the Swedish scientist Sefstrom in 1831. He named it after Vanadis the “Swedish Goddess of Beauty and Fertility” because of the attractive brilliant colors of the chemical compounds in which it was first found. It was well named for it has provided many discoveries for scientists and technologists who, for over 150 years, have developed and continue to develop new materials for the benefit of humanity.

Use of vanadium goes as far back as 3rd Century BC when super strength "Damascus steel" was first manufactured. The first wide-scale use of vanadium in industry was in 1905, when Henry Ford realized that the Model-T could be stronger and lighter if he used vanadium-enriched steel. The need for stronger, lighter-weight steel emerged with the need for higher safety.
The World Needs Vanadium More Than Ever

Steel

- About 85% is produced as ferrovanadium, a high strength low alloy additive (or HSLA), used in construction structure and rebar.
- Increases resistance to corrosion - used for tool steel (e.g., axles and crankshafts), for tubes and pipes manufacturing, and in the automotive industry to make components such as hoods, door panels and piston rods.

Chemicals & Catalysts

- Applications in dye manufacturing, in glass and ceramics production and as a catalyst in manufacturing sulfuric acid and can be combined with gallium to form superconductive magnets.
- Vanadium as a supplement for treating and preventing many health issues.

Master Alloys

- Mixed with aluminum, to strengthen and promote thermal stability in titanium alloy; largely utilized in the aviation sector to produce jet engines, airframes and spacecrafts, the high strength to weight ratio provides fuel efficiency.
- Also used in nuclear reactors because of the element’s low neutron absorption abilities and resistance to high temperature stress.

VRFBs

- Stores energy in liquid vanadium electrolyte (both the anolyte and catholyte) that never degrades. Hardware can be recycled and the vanadium electrolyte (up to 80% of the VRFB) can be reused indefinitely.
- Potential to revolutionize entire power grids and many new applications with sustainable energy storage.
Vanadium demand for energy storage exceeds the total market size

1 Gigawatt Hour = 10% of current global vanadium production

- The energy of tomorrow will be radically different from the past. Innovation will prove essential to meeting the world's growing energy needs sustainably.

- Vanadium redox flow batteries "VRFBs" represent the most sustainable, mature technology available requiring enormous amounts of vanadium. The key to mass commercialization of green energy storage is sustainable supply of vanadium.

- Unlocking strategic vanadium supply can revolutionize power grids and dramatically reduce the world's carbon footprint by combining sustainable production with infinite reuse of vanadium in energy storage.

- A vertically integrated, sustainable energy storage supply chain is within reach with VanadiumCorp's strategic mining and technology assets.

Top Photo: 600,000 Litres of Vanadium Electrolyte at Fraunhofer ICT, Germany

Bottom Photo: Bolong/Rongke VRFB Gigafactory in Dalian, China
Energy storage allows for the capture of energy produced at one time for use at a later time and is the key to ensuring a carbon-neutral world.

According to the World Bank, production of battery metals will have to increase by nearly 500% by 2050 to meet the growing demand for clean energy technologies.

Vanadium is one of the top five minerals listed, showing to have a significant demand increase by 2050.

Over 3 billion tonnes of minerals and metals will be needed to deploy wind, solar and geothermal power, as well as the energy storage required to transition to a low-carbon economy.

Source: World Bank, 2019
How Does a Vanadium Redox Flow Battery Work?

The battery only uses vanadium electrolyte, and it takes advantage of the metal’s multiple oxidation states.

The electron differential between the two cells generates electric power.
<table>
<thead>
<tr>
<th>THE ADVANTAGES</th>
<th>VRFB vs LITHIUM-ION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cycles (lifespan)</td>
<td>Vanadium: Long life, > 25 years at high deep of discharge (DOD)</td>
</tr>
<tr>
<td>Suitable for grid scale storage & load leveling</td>
<td>Suitable to all sizes</td>
</tr>
<tr>
<td>Compatible with renewable energy sources (solar, wind, hydropower)</td>
<td>Yes</td>
</tr>
<tr>
<td>Independent scaling of power and capacity</td>
<td>Yes, fully scalable</td>
</tr>
<tr>
<td>Low environmental footprint</td>
<td>Yes</td>
</tr>
<tr>
<td>Recyclability</td>
<td>100% recyclable</td>
</tr>
<tr>
<td>Non-hazardous/non-explosive</td>
<td>Yes (water based electrolyte)</td>
</tr>
<tr>
<td>Residual value</td>
<td>Yes (electrolyte keeps its full value)</td>
</tr>
</tbody>
</table>
Enabling Future Possibilities with Vanadium Redox Flow Batteries

- Marine
- Transportation
- EV Charging

- Communication
- Mining Operations
- Military

- Integration
- Microgrid
- Offgrid

- Smart Home
- Commercial
- Essential Services