Hierarchical Porous Intercalation-Type V2O3 as High-Performance Anode Materials for Li-Ion Batteries

Abstract

As intercalation-type anode materials for Li-ion batteries (LIBs), the commercially used graphite and Li4Ti5O12 exhibit good cycling and rate properties, but their theoretical specific capacities are too low to meet the ever-growing demands of high-energy applications such as electric vehicles. Therefore, the development of new intercalation-type anode materials with larger capacity is very desirable. Herein, we design and synthesize novel 3 D hierarchical porous V2O3@C micro/nanostructures consisting of crumpled nanosheets, through self-reduction under annealing from the structurally similar VO2 (B)@C precursors without the addition of any other reducing reagent or gas. Excitingly, it is found for the first time through ex situ XRD technology that V2O3 is a new, promising intercalation-type anode material for LIBs with a high capacity. V2O3@C micro/nanostructures can deliver a large capacity of 732 mAh g−1 without capacity loss at 100 mA g−1 even after 136 cycles, as well as exhibiting excellent cycling and rate performances. The application of V2O3 for Na-ion batteries (NIBs) is elaborated for the first time, and excitingly, it is found that V2O3@C micro/nanostructures may be promising anode materials for NIBs.

The information contained in this article and provided by VanadiumCorp is sourced from third-party content in the public domain and is for general information purposes only, with no representation, guarantees of completeness, warranty of any kind, express or implied regarding the accuracy, adequacy, validity, availability, completeness, usefulness or timeliness of any information contained within. Please also excuse any syntax as authors and reposted articles are sourced from global origins. UNDER NO CIRCUMSTANCE SHALL WE HAVE LIABILITY TO YOU FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF THIS REPOSTED ARTICLE. THE USE OF THIS ARTICLE AND YOUR RELIANCE ON ANY INFORMATION CONTAINED HEREIN IS SOLELY AT YOUR OWN RISK. VANADIUMCORP ALSO ASSUMES NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR OMISSIONS IN THE CONTENT OF THIS ARTICLE.